%I
%S 2,4,4,0,20,0,11,19,19,11,0,100,19,100,0,31,165,99,99,165,31,0,353,
%T 138,2673,138,353,0,0,885,197,4797,4797,197,885,0,0,3548,380,53564,
%U 7014,53564,380,3548,0,0,8661,2580,174125,82711,82711,174125,2580,8661,0,0
%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row and column prime, read as a binary number with top and left being the most significant bits.
%C Table starts
%C ..2.....4.....0......11.......0.......31........0.......0.......0........0
%C ..4....20....19.....100.....165......353......885....3548....8661....21544
%C ..0....19....19......99.....138......197......380....2580....5892....10199
%C .11...100....99....2673....4797....53564...174125.1264975.5828759.28376885
%C ..0...165...138....4797....7014....82711...229036.1430550.5704715
%C .31...353...197...53564...82711..8124875.25084172
%C ..0...885...380..174125..229036.25084172
%C ..0..3548..2580.1264975.1430550
%C ..0..8661..5892.5828759
%C ..0.21544.10199
%H R. H. Hardin, <a href="/A261761/b261761.txt">Table of n, a(n) for n = 1..83</a>
%e Some solutions for n=4 k=4
%e ..0..0..1..1..1....0..0..0..1..1....0..0..1..1..1....1..0..1..1..1
%e ..0..0..1..1..1....0..0..0..1..0....0..0..1..1..1....0..0..0..1..1
%e ..1..1..1..1..1....0..1..0..1..1....1..1..1..1..1....1..0..1..1..1
%e ..0..0..0..1..1....1..1..1..1..1....1..0..0..1..1....1..1..1..0..1
%e ..1..1..1..1..1....0..1..0..1..1....1..1..1..1..1....1..0..1..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Aug 31 2015
